

Development of Psychometrically Equivalent Singapore English Speech Audiometry Materials

Presented by: Justina Tan (justinatanyuhan@gmail.com) Research Supervisors: A/Prof Jenny Loo & Ms Kimberly Soh

CONTENT

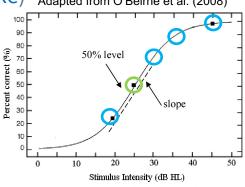
- 1. Introduction
- 2. Background
- 3. Methods
- 4. Results
- 5. Discussion
- 6. Conclusion

Introduction

Speech Audiometry

• Test of auditory function using speech materials (recorded, live-voice)

Speech Recognition Threshold (SRT)


- Softest level at which speech stimuli can be detected 50% of the time
- Tested using *spondaic* words (e.g., blackboard, hotcake) Adapted from O'Beirne et al. (2008)

Word Recognition Score (WRS)

- Percentage of accuracy at a specified intensity
- Tested using *monosyllabic* words (e.g., run, spin)

Performance Intensity Function (P-I Function)

• Plotting percentage of accuracy (y-axis) against presentation level (x-axis)

Problem: Existing English speech audiometry materials are not culturally appropriate

- Existing materials are recorded for and by monolingual English speakers
- Live speech presentation is used despite its significant drawbacks
- Previously recorded materials were not adequate (Soo, 2015; New, 2017)

Leads to:

- Minimal differences in performance compared to recorded American versions
- Lower scores than expected due to unfamiliarity with words/pronunciation rather than problem in audition

Research Aim

Develop **culturally-appropriate** and **psychometrically equivalent** speech test materials that can be used for testing the general Singaporean.

- 100 spondaic words for SRT testing
- 500 monosyllabic words for WRS testing

Source of language data: **National Speech Corpus (NSC)** by NTU & the Infocomm Media Development Authority (IMDA) (Koh et al., 2019).

• Created for natural language processing in speech recognition with a component containing 1000 hours of spontaneous speech between 250 pairs of speakers

Method

Ol Phase I Word Selection and Familiarity Rating

02 Phase II Recording, rating, selection, acoustic standardization

03
Phase III
Perceptual Testing and
Equating Word Difficulty

O4 Phose IV Phonemic balancing, validation etc...

Preparation

Word Selection

- 1000 hours of spontaneous conversation transcripts
- Data cleaning
- 17.5 million tokens (43,000 unique words)
- Sorted based on frequency of occurrence

Exclusion Criteria:

- 1. Contractions
- 2. Non-English words
- 3. Inappropriate or offensive terms

502 MS and 123 SD words were chosen.

PHASEI

Word Familiarity Rating

Age Group	No. of participants	Gender Proportion
21 to 39	4	2M, 2F
40 to 59	4	2M, 2F
60 to 79	2	1M, 1F

Based on proportion of age groups speaking English at home (Singapore department of Statistics, 2015).

- 10 Singaporeans (24 to 75 years old)
- Speakers of English and at least one other language (Chinese, Tamil, Malay etc.)
- 8 Chinese, 1 Malay, 1 Indian

Tasks:

- 1. Rate 502 MS/123 SD words on familiarity on a 5-point likert scale.
- 2. Complete a language background questionnaire.

494 MS and 110 SD words were chosen.

PHASEII

- 1. Speaker Selection
- **2.** Recording of words
- **3.** Word Intelligibility Rating
- 4. Acoustic Standardization

Speaker: 26 y/o Native Singaporean male speaker

Recording: Professional recording studio according to BSI guidelines (2012). Pronounced with NSC-determined IPA

Raters: 4 bilingual Singaporean raters (26 to 54 years old, 2M, 2F)

Acoustic Standardization: Equate RMS levels across test words

452 MS and 110 SD words were acoustic standardized.

PHASE III

PARTICIPANTS

- 10 Singaporean bilinguals
- 4 males and 6 females
- Aged 21 to 25 years old
- *M* = 24, *SD* = 1.49

Pure tone audiometry

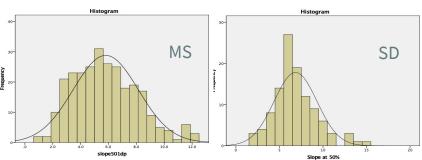
- 250Hz to 8000Hz
- PTA: -2 to 18 dB HL
- *M* = 10.7 dB HL, *SD* = 5.34

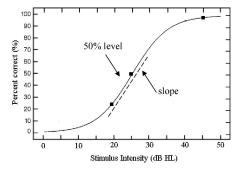
PROCEDURES

- Language background questionnaire
- Ascending presentation of words (2-dB steps)
- Plotting of P-I functions

270 MS and 110 SD words were used in the speech identification task.

Results

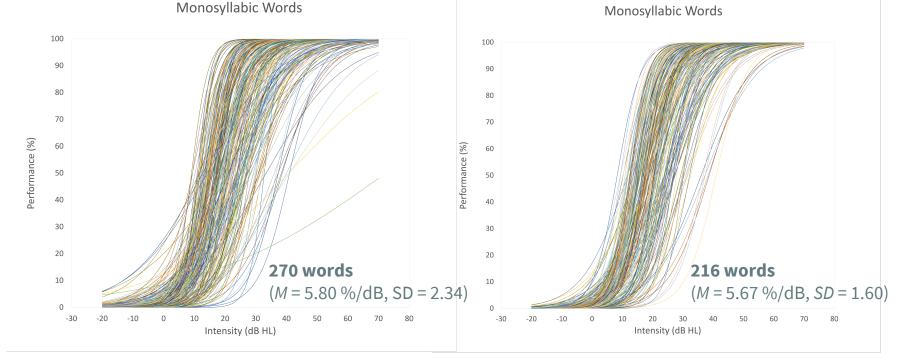

Phase III – Perceptual Testing and Equating Word Difficulty


Logistic Regression

- Logistic regression done to obtain regression slopes and intercepts
- Obtained slopes at 50% and 20-80% performance
- P-I functions plotted for every word

Test of normality

- MS: Normal distribution
- SD: Leptokurtik normal distribution y

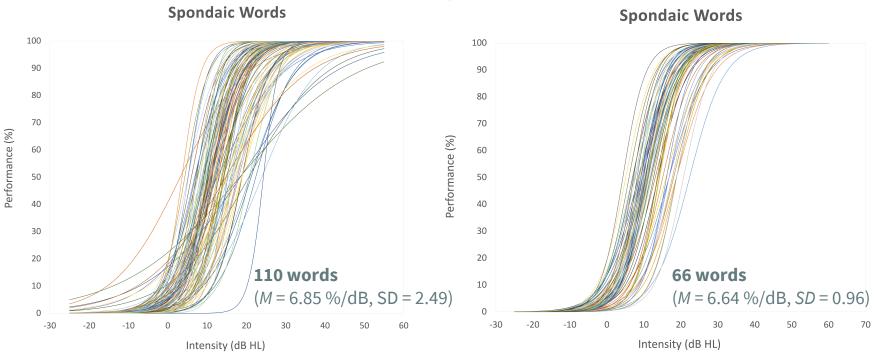


Cut off: 10th to 90th percentile (2.86%/dB to 8.98%/dB)

Results

After cut-off

Before cut-off



Cut off: 20th to 80th percentile (4.76%/dB to 8.57%/dB)

Results

After cut-off

Before cut-off

Results

Phase III – Perceptual Testing and Equating Word Difficulty

Language Background Questionnaire

- 2 English-Tamil bilinguals, 8 English-Mandarin Chinese bilinguals
- All participants reported English as predominant language
- All participants lived in Singapore since birth
- All rated English proficiency from "very well" to "extremely well"

	Extremely		Moderately	Slightly	Not familiar
	well	Very well	well	well	at all
English					
Mother Tongue					

8) How well do you speak the following languages?

Steepness of slope

- The slope steepness indicates the maximum rate that performance increases as stimulus intensity increases (McPherson & Akeroyd, 2014)
- Psychometric equivalence can be achieved through intensity adjustment of words with similar slopes to the mean PTA of the participants (e.g., Lee & Lee, 2020)

Current study (Slope at 50%):

Spondees – 1.70 to 15.47%/dB (*M* = 6.64) Monosyllables – 0.81 to 12.28%/dB (*M* = 5.67)

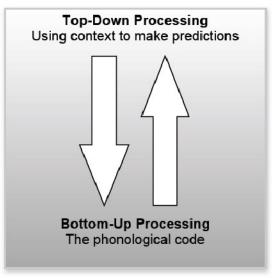
Cut-off criteria selection

- Monosyllables vs Spondees
- Differences in SRT and WRS requirements (i.e., test-list homogeneity vs testitem homogeneity)

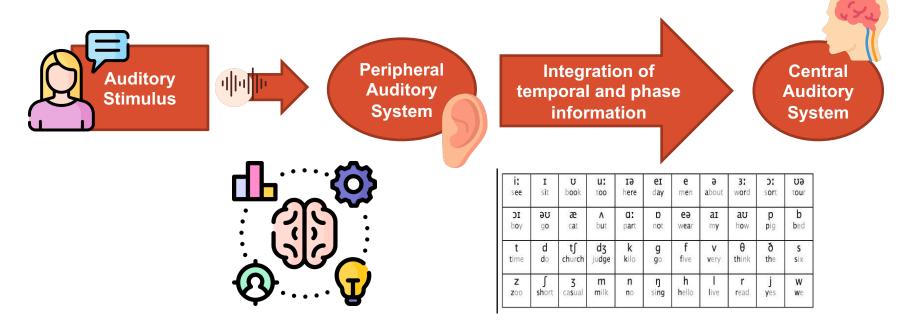
Words with high error rates

• "While" - "wow", "wild" (90%)

Word-initial or word-final fricatives:


- "than" → "van", "zen" (70%)
- "wor**th**" → "worse", "worst" (50%)
- "fit" → "sit" (40%)
- "these" → "bees", "vees" (20%)

Phoneme discrimination


- Individual differences
- Contextual cues and top-down processing in spondees vs. monosyllables
- Role of pronunciation familiarity
- ? Standard Singaporean pronunciation

Test scoring

- Accurate information transmission between listener and speaker
- Influenced by prior knowledge and sensitivity to phonemic contrasts

Limitations & Recommendations

日

Limited resources (time, sample size)

U

Participant fatigue

KA)

Possible tester bias

l onger d

Longer data collection, larger sample size

Digital scaling, scoring alternatives

Validation studies

References

- British Standards Institution. (2012). BS EN ISO 8253-3:2012: Acoustics Audiometric test methods. Part 3: Speech Audiometry.
- Beattie, R. C., Edgerton, B. J., & Svihovec, D. V. (1977). A comparison of the Auditec of St. Louis cassette recordings of NU-6 and CID W-22 on a normal-hearing population. Journal of Speech and Hearing Disorders, 42(1), 60-64.
- Honu-Mensah, C. M. (2015). Development and Evaluation of Psychometrically Equivalent Trisyllabic Words for Speech Audiometry in Fante (Doctoral dissertation, University Of Ghana).
- Koh, J. X., Mislan, A., Khoo, K., Ang, B., Ang, W., Ng, C., & Tan, Y. Y. (2019). Building the singapore english national speech corpus. *Malay*, *20*(25.0), 19-3.
- Lee, G. J. C., & Lee, S. L. H. (2020). Development of SC-10: A psychometrically equivalent Singapore Mandarin disyllabic word list for clinical speech audiometry use. World Journal of Otorhinolaryngology-Head and Neck Surgery.
- MacPherson, A., & Akeroyd, M. A. (2014). Variations in the slope of the psychometric functions for speech intelligibility: A systematic survey. *Trends in Hearing*, *18*, 2331216514537722.
- Nissen, S. L., Harris, R. W., Jennings, L. J., Eggett, D. L., & Buck, H. (2005). Psychometrically equivalent trisyllabic words for speech reception threshold testing in Mandarin: Palabras trisilábicas psicométricamente equivalentes para evaluar umbrales de recepción del lenguaje en Madarín. *International Journal of Audiology*, *44*(7), 391-399.
- O'Beirne, G., Sincock, B.P., & Starfinger, C. (2008). Clinical Applicability of Adaptive Speech Testing: A comparison of the administration time, accuracy, efficiency and reliability of adaptive speech tests with conventional speech audiometry.
- Zoghbor, W. S. (2016). A Model for Speech Processing in Second Language Listening Activities. *English Language Teaching*, 9(2), 13-19.

THANKYOU!